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Carlucci et al. (2013) proposed a theoretical model describing exit vibrations of a shell
launched by a gun. The model treats the shell as a system of a spring, damper and a rigid
mass. In this paper, similar models describing vibrations of shells and monolithic projectiles
are compared with some 1D models taking into account wave reverberations. The comparison
proves that the models taking into account the wave motion, forecast similar amplitudes and
frequencies of vibrations as discrete models. However, details of acceleration time courses
differ considerably. The problem of the influence of the friction force between the shell wall
and the filling is also discussed. The results of modelling serve as well for assessing if some
projectile velocity oscillations detected by making use of the Doppler radar can be solely
attributed to the exit vibrations.
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1. Introduction

Projectiles and shells moving inside a gun tube undergo compression. After leaving the muz-
zle, they experience a sudden drop of pressure acting on their base. This decompression causes
vibrations of the projectiles and shells, which can be detrimental for the integrity of their in-
ner structure. Ammunition designers take this into account by assuming that there is a step
drop of the pressure from the muzzle pressure to the ambient pressure. However, recently some
data became available enabling designers to take into account the continuous character of the
pressure changes. On the basis of accelerometer records, Carlucci and Vega (2007) proposed an
approximation of pressure changes by the exponential decay curve

p(t) = pm exp(−βt) = pm exp
(

−
t

tm

)

(1.1)

Values of the muzzle pressure pm and the coefficient β were published for a 155mm cannon
in Carlucci and Vega (2007) and Carlucci et al. (2013).
Some theoretical models were considered by Trębiński and Czyżewska (2015a,b), enabling

calculation of pressure courses acting on the projectile in the intermediate period. On the basis
of the results of calculations for a broad range of launching systems, an approximate formula
was proposed for calculating the value of the coefficient β for a launching system of the caliber d

β = (0.74 + 0.24Mm)
um
d

(1.2)

Values of the muzzle flow Mach number Mm and the muzzle velocity um can be determined
on the basis of results of internal ballistics calculations.

In Carlucci et al. (2013), a model was proposed describing vibrations of a shell subjected
to the action of a pressure pulse (1.1). The motion of the ogive of the shell was modeled in
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the reference frame moving with the center of gravity of the shell. The ogive was treated as
a rigid mass, whereas the wall of the shell was treated as a spring. Its inertia was taken into
account by adding one third of its mass to the mass of the ogive. A damper was added in order
to take into account damping of the vibrations. The model predicts a considerable magnitude
of acceleration oscillations, which is in qualitative agreement with experimental observations.
Considering accelerometers as vibrating systems showed very small influence of their inertia and
rigidity on the courses of acceleration, except for the very beginning of the process.

The determined values of the period of vibrations of projectiles and shells as well as the
characteristic time tm in expression (1.1) are close to the values of the reverberation time of
elastic waves moving in projectiles and shells. In such a case, one can expect that the results
of modeling with the use of discrete models and models incorporating wave motion may differ
considerably. This paper is devoted to analysis of the role of wave reverberations. The main
objective of this analysis is to determine to which extent the amplitudes and frequencies of the
exit vibrations of projectiles and shells forecasted by discrete models and models taking into
account wave reverberations differ. Several 1D models of the wave motion in a projectile or a
shell, when subjected to action of the pressure pulse described by (1.1), are considered. Conclu-
sions concerning the potential influence of wave processes on the indications of accelerometers
embedded in the projectiles and shells are formulated.

Doppler radar measurements of the velocity changes of a projectile leaving the muzzle of
a 30mm launching system, presented in Leciejewski et al. (2013), showed oscillations of the
velocity value (Fig. 1). The question arose whether these oscillations can be attributed solely to
the vibrations of the projectile. Finding the answer to this question was the secondary objective
of the analysis presented in this paper.

Fig. 1. Results of measurements of the projectile velocity changes outside the muzzle of a 30mm
launching system (Leciejewski et al., 2013)

2. Models

2.1. Models of a monolithic projectile

The sense of physical models considered can be explained by referring to Fig. 2. In model 1,
the projectile is considered as a system of two rigid masses m1 and m2 connected by a spring.
The stiffness of the spring is determined as

ks =
AE

l0
A =
πd2

4
(2.1)
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Fig. 2. Schemes of models 1 and 2

The mathematical model corresponding to physical model 1 is given by the following initial
value problem

m1
d2x1
dt2
− ks(x2 − x1 − l0) = Apme

−

t

tm m2
d2x2
dt2
+ ks(x2 − x1 − l0) = 0

x1(0) = 0 x2(0) = l0 −
m2Apm

(m1 +m2)ks

dx1
dt

∣

∣

∣

t=0
=
dx2
dt

∣

∣

∣

t=0
= um

(2.2)

Dividing the first equation by m1 and the second one by m2 and summing up the equations,
we obtain

d2(x2 − x1)

dt2
+
( ks
m1
+
ks
m2

)

(x2 − x1 − l0) = −
Fp(t)

m1
(2.3)

Defining a new variable

w = x2 − x1 − l0 (2.4)

we obtain the following initial value problem

d2w

dt2
+ ω2w = −

Apm
m1
e−

t

tm ω2 = ks
( 1

m1
+
1

m2

)

w(0) = −
m2Apm
(m1 +m2)ks

dw

dt

∣

∣

∣

t=0
= 0

(2.5)

The solution to the problem is given by

w(t) = −
Apm

m1ω2(1 + ω2t2m)

[

ωtm sin(ωt) + cos(ωt) + ω
2t2me

−

t

tm

]

(2.6)

Making use of this, we obtain from the second equation of (2.2) an expression for acceleration
of the forward part of the projectile

a(t) =
Apm

m(1 + ω2t2m)

[

ωtm sin(ωt) + cos(ωt) + ω
2t2me

−

t

tw

]

m = m1 +m2 (2.7)
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Integrating (2.7) from 0 to t, we obtain the following formula for the velocity increase of the
forward part of the projectile

∆u(t) =
Apmtm

m(1 + ω2t2m)

[

1− cos(ωt) +
1

ωtm
sin(ωt) + ω2t2m

(

1− e−
t

tm

)]

(2.8)

In model 2, the projectile is treated as an elastic cylindrical rod with the same caliber d
and mass m as the real projectile and length l0 = 4m/(πd

2). The material properties of the rod
are determined by its density ρ and Young’s modulus E. It is assumed that the force Fp(t) is
produced by the pressure uniformly distributed at the left end of the rod. The pressure changes
in time are described by (1.1). The loading produces a uniaxial stress state in the rod. It is
assumed that there is no force at the right end of the rod. This assumption is justified by the
observation that the pressure acting on the forward part of the projectile is much less than the
pressure acting on its base in the whole phase when the projectile is accelerated. We assume
that at the beginning of the process all parts of the rod have the same velocity and acceleration.

The mathematical model corresponding to physical model 2 is given by the following initial-
boundary value problem in the Lagrangian coordinates

ρu,t= σ,x σ,t= Eu,x

u(x, 0) = um σ(x, 0) = pm
( x

l0
− 1
)

σ(0, t) = −pme
−

t

tm σ(l0, t) = 0

(2.9)

Initial condition (2.9)3,4 for the stress σ follows from the assumption that the whole rod has
initially the same acceleration.

Solving the problem, we obtain the following expressions for the velocity increase and acce-
leration of the forward part of the projectile

∆u(t) = ∆um

[

t

Tw
− 2N + 2

N
∑

j=1

exp
(

−
t− (2j − 1)Tw

tm

)

]

∆um =
pm
ρc

N = E
(n+ 1

2

)

n = 0, 1, 2, . . . Tw =
l0
c

c =

√

E

ρ

a(t) = ∆um

[

1

Tw
−
2

tm

N
∑

j=1

exp
(

−
t− (2j − 1)Tw

tm

)

]

(2.10)

2.2. Models of the shell

The physical object considered and its physical models are illustrated in Fig. 3. In model 3,
the ogive and the base of the shell are treated as rigid masses. The wall of the shell of length l0
is treated as an elastic hollow cylinder, whereas the filling (explosive) is treated as an elastic
cylindrical rod with density ρf and velocity of sound cf . It is assumed that there is no friction
between the wall and the filling. Because the filling is more compressible than the wall, it can
also be assumed that there is no contact between the filling and the ogive. A uniaxial stress
state is assumed inside the wall and the filling.

The mathematical description of model 3 is given by the following initial-boundary value
problem (the subscript f refers to the filling)

ρu,t= σ,x σ,t= ρc
2u,x ρfuf ,t= σf ,x σf ,t= ρf c

2
fuf ,x

u(x, 0) = um uf (x, 0) = um
(2.11)
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Fig. 3. Schemes of the physical object (a shell) and of models 1, 3 and 4 used for the analysis

and

σ(x, 0) = ρa0(x− l0)−
m2a0
Ac

a0 =
pmA

m1 +m2 + ρl0Ac + ρf l0Af

σf (x, 0) =
(m1 +m2 +Acρl0)a0 −Apm

Af
+ ρfa0x

(2.12)

and

m1u,t (0, t) = Apme
−

t

tm +Acσ(0, t) +Afσf (0, t)

m2u,t (l0, t) = −Acσ(l0, t) σf (l0, t) = 0
(2.13)

where Af , Ac mean the cross-sectional area of the filling and the wall.
The initial condition for stress (2.12) has been derived on the assumption that at the begin-

ning of the process the whole shell has the same acceleration a0 and on the assumption that there
is no contact between the filling and the ogive. The second assumption has also been applied in
the formulation of the boundary condition at x = l0.
Problem (2.11)-(2.13) has been solved by the method of characteristics. The characteristic

grid is shown in Fig. 4. It shows wave trajectories in the wall of the shell. The values of velocity
and stress in the grid nodes are calculated using the characteristic relations

∆σ = ±ρc∆u ∆x = ±c∆t ∆σf = ±ρfcf∆uf ∆x = ±cf∆t (2.14)

In the node i, we have

σi =
σi+1 + σi−1 + ρc(ui+1 − ui−1)

2
ui = ui−1 +

σi − σi−1
ρc

σfi =
σfL + σfR + ρf cf (ufR − ufL)

2
ufi = ufL +

σfi − σfL
ρf cf

(2.15)
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Fig. 4. Characteristic grid used for calculations for models 3, 4 and 5

The values of velocity and stress inside the filling in the auxiliary nodes L and R (characteri-
stics L− i and R− i correspond to the wave velocity cf ) are calculated by a linear interpolation
between the nodes i− 1 and i+ 1

qL = qi−1 + (qi+1 − qi−1)
c− cf
2c

qR = qi−1 + (qi+1 − qi−1)
c+ cf
2c

q = {uf , σf}
(2.16)

The values of velocity and stress in nodes 1 and n are calculated by making use of an
approximate form of boundary conditions (2.13) and relations at characteristics 1 – BL and
n – BR

uBL = u1 + a1e
−

t

tm

(

1− e−
2∆t

tm

)

+ a2(σ1 + σBL) + a3(σf1 + σfBL)

ufBL = uBL a1 =
Apmtm
m1

a2 =
Ac∆t

m1
a3 =

Af∆t

m1
σBL = σ2 − ρc(uB − u2) σfBL = σfR − ρf cf (uBL − ufR)

uBR = un − a4(σn + σBR) a4 =
Ac∆t

m2
ufBR = ufL −

σfL
ρfcf

σBR = σn−1 + ρc(uBR − un−1) σfBR = 0

(2.17)

The values of velocity and stress inside the filling in the auxiliary nodes L andR are calculated
by a linear interpolation between nodes 1-2 and (n− 1)-n

qL = qn + (qn−1 − qn)
2cf
c+ cf

qR = q1 + (q2 − q1)
2cf
c+ cf

q = {uf , σf} (2.18)

Calculations are performed in two iterations. In the first iteration, the values of stress are
set as

σBL = σ1 σfBL = σf1 σBR = σn (2.19)

In the second iteration, the values of stress calculated in the first iteration are used.

Neglecting friction between the wall and the filling is questionable because the filling is
compressed and it exerts pressure on the wall. Instead of introducing the friction force into the
model, two limiting cases are considered. The model without friction is the first limiting case.
The second limiting case is a model for which it is assumed that the friction force is strong
enough to exclude any displacement between the filling and the wall. If both models give similar
results, it will be no necessity to take into account the friction force. In the second limiting
case, the compressibility of the filling has no influence on the process. Its inertia can be taken
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into account as an additional mass added to mass of the wall. This can be done by artificially
increasing density of the wall material

ρa = ρ+ ρf
Af
Ac

(2.20)

The central part of the shell can be treated as a cylindrical rod with cross-section area Ac
and density ρa. This is the sense of model 4. Its mathematical form is not presented because it
can be easily derived from problem (2.11)-(2.13) by neglecting all the expressions corresponding
to the filling. Also the method of solving the problem is similar to that described for model 3.
In the modeling of the vibrations of the shell, model 1 can be used. The massm1 is calculated

as the sum of mass of the base of the shell and mass of the wall and the filling lying between the
base and the center of gravity. The mass m2 is calculated as the sum of mass of the ogive and
mass of the wall and the filling lying between the ogive and the center of gravity. The stiffness
of the spring is calculated by using formula (2.1) with A replaced by Ac.

Fig. 5. Schemes of the model by Carlucci et al. (2013) (a), (b) and models 5 and 6 (c), (d)

In order to make comparison with the results of the model described by Carlucci et al. (2013),
two more models are considered, as shown in Fig. 5. The vibrations are modeled in the reference
frame moving with the center of gravity. Figure 5a shows the scheme of the model presented in
Fig. 4 in the cited paper. It is erroneous because the force F (t) should be applied to the mass m,
not to the spring and the damper. It is the inertial force, so its value should be expressed as

F (t) =
m

ms
Fp(t) (2.21)

where ms is the total mass of the shell. In Carlucci et al. (2013), the equality of both the forces
was assumed. The proper form of the scheme is shown in Fig. 5b. The equations given in the
cited paper correspond to this scheme. Figure 5c presents a scheme of model 5 considered in
this work. It differs from the scheme in Fig. 5b by the absence of the damper and by the sign
of the coordinate x. The mass m in model 5 is taken as the sum of mass of the ogive and 1/3
of mass of the shell wall. Figure 5d corresponds to model 6. The spring is replaced by an elastic
rod with cross-section area Ac.
The mathematical model corresponding to model 5 is given by the following initial value

problem

m
d2w

dt2
+ ksw = −

m

ms
Apme

−

t

tm w = x− l0

w(0) = −
m

ms

Apm
ks

dw

dt

∣

∣

∣

t=0
= 0

(2.22)

Solving this problem, the following expressions for the velocity increase and acceleration can
be obtained

∆u(t) =
Am2pm

ms(m+ kst2m)

[

tme
−

t

tm + tm sin(ωt)−
ω

ks
cos(ωt)

]

a(t) =
Am2pm

ms(m+ kst2m)

[

ωtm cos(ωt) +
ω2

ks
cos(ωt)− e−

t

tm

]

(2.23)
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The mathematical model corresponding to model 6 is given by the following initial-boundary
value problem

ρu,t= σ,x σ,t= ρc
2u,x u(x, 0) = um σ(x, 0) = −

mApm
msAc

u(0, t) = 0 m2u,t (l0, t) = −
m

ms
Apme

−

t

tm −Acσ(l0, t)
(2.24)

The problem is solved by the method of characteristics in the way described for model 3.

3. Results of the modeling

Calculations have been performed by making use of models 1 and 2 for a 30mm gun used in the
investigations presented by Leciejewski et al. (2012). The following values of parameters have
been applied: A = 7.07 cm2, l0 = 66mm, m1 = m2 = 183 g, ρ = 7850 kg/m

3, E = 200GPa,
pm = 51.5MPa, tm = 0.0211ms. The value of parameters pm and tm have been determined
by the regression of the pressure course calculated by the model described in Trębiński and
Czyżewska (2015). They are shown in Fig. 6. The dotted line corresponds to the approximation
given by (1.2).

Fig. 6. Pressure course for a 30mm gun calculated by the model proposed in Trębiński and Czyżewska
(2015b), regression curve and approximation of the course using formulae (1.1) and (1.2)

Figures 7a and 7b present a comparison of the results obtained by models 1 and 2. Although
the character of the velocity changes is different for the two models, the amplitude of oscillations
is similar. It is much less than the amplitude of the velocity oscillations presented in Fig. 1. This
suggests that these oscillations cannot be attributed to axial vibrations or wave reverberations
in the projectile. We can suppose that these oscillations are caused by yawing of the projectile
or by the effect of ionization of gases in strong shock waves arising in the vicinity of the muzzle
(description of wave processes accompanying the exit of projectiles are given in Klingenberg and
Heimerl (1988)).
As far as acceleration is concerned, the differences between the two models are much mo-

re pronounced. This means that it is recommended to take into account the wave motion in
predicting the acceleration of a projectile leaving the muzzle.
Figures 8a and 8b present a comparison of the results obtained by models 5 and 6. The values

of parameters used in calculations have been the same as in Carlucci et al. (2013): A = 188 cm2,
Ac = 35 cm

2, l0 = 508mm, m = 3.75 kg, ρ = 7850 kg/m
3, E = 199GPa, pm = 68.9MPa,

tm = 0.1731ms. For the purpose of comparison, it has been assumed that m = ms. The two
models give very close results. This means that in this case taking into account the wave rever-
berations is not necessary.
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Fig. 7. Comparison of the (a) velocity increase and (b) acceleration courses calculated by the use of
models 1 and 2

Fig. 8. Comparison of the (a) velocity increase and (b) acceleration courses of the shell ogive calculated
by the use of models 5 and 6

The picture is somewhat different if we consider the wave motion in the whole shell. Figures 9a
and 9b show a comparison of the calculated acceleration courses of the shell base and the shell
ogive calculated by the use of models 3 and 4. The values of parameters applied in calculations
have been as follows: A = 188 cm2, Ac = 93 cm

2, Af = 95 cm
2, l0 = 590mm, m1 = 6kg,

m2 = 5kg, ρ = 7850 kg/m
3, c = 5035m/s, ρf = 1715 kg/m

3, cf = 2470m/s, pm = 68.9MPa,
tm = 0.1731ms.

Fig. 9. Comparison of the (a) velocity increase and (b) acceleration courses of the shell ogive calculated
by the use of models 3 and 4



676 R. Trębiński

Although models 3 and 4 represent the opposite limiting cases, as far as friction between
the wall and the filling is concerned, they give close results. Therefore, simpler model 4 is
recommended. The results obtained by making use of it are compared with the results from
model 1 in Figs. 10a and 10b. Although the frequency of oscillations of the velocity and the
acceleration values are very close, model 4 forecasts considerably larger amplitudes of oscillations.

Fig. 10. Comparison of the (a) velocity increase and (b) acceleration courses of the shell ogive
calculated by the use of models 4 and 1

Figure 11 presents the acceleration courses of the static center of gravity of the shell calculated
by model 4. These are compared with the acceleration calculated for the shell treated as a rigid
body. It can be seen that an accelerometer positioned in the static center of gravity will record
acceleration courses that considerably differ from the mean acceleration of the shell.

Fig. 11. Comparison of the acceleration courses of the shell static center of gravity calculated by the use
of model 4 and for the shell treated as a rigid body

4. Conclusions

• Models taking into account wave reverberations generally predict similar frequencies and
amplitudes of vibrations to the simple vibrational models. However, the character of time
changes of acceleration differs considerably. Therefore, modeling of the wave motion is
recommended for interpretation of the signals from accelerometers embedded in the shells.

• Close results obtained for models 3 and 4 prove it to be acceptable to assume that there
is no displacement between the wall of the shell and the filling.

• The predicted amplitudes of velocity oscillations of the projectile leaving the muzzle are
much smaller than those which can be deduced from the results of Doppler radar me-
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asurements. Therefore, the observed oscillations of velocity cannot be solely attributed to
vibrations of the projectile.
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